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Boost; the new normal at 13 TeV 

- searches: phase space pushed to high 
mass tail → BOOST 

- measurements: take advantage  
of high hadronic BR whilst having a 
handle on QCD → BOOST 

- even SM precision measurement  
analyses  are using merged  
hadronic V-jets!

CMS-PAS-B2G-17-001 
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December 2013Jet Substructure

Boosted massive particles → fat jets

Normal analyses: two quarks from
X → qq̄ reconstructed as two jets

jet 1

jet 2

X at rest
X

High-pt regime: EW object X
is boosted, decay is collimated,

qq̄ both in same jet

single
fat jet

z

(1−z)

boosted X

Happens for pt ! 2m/R

pt ! 320 GeV for m = mW , R = 0.5

Gavin Salam (CERN/LPTHE/Princeton) Jets in Higgs Searches HC2012 2012-11-18 19 / 29
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Most obvious way of 
detecting a boosted decay 

is through the mass of the jet 

But jet mass is 
poor in practice:

e.g., narrow W resonance
highly smeared by QCD 

radiation
(mainly underlying event/

pileup)
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Mass smeared  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1) What’s the mass of my object?

Gavin Salam (CERN) Jets and jet substructure (4) TASI, June 2013 9
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Gavin Salam (CERN) Jets and jet substructure (4) TASI, June 2013 8
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Jet mass: the problems

• Have many QCD jets, some of 
them are massive too!


• HOW TO GET RID OF THEM?

W+jets QCD

Gavin Salam (CERN) Jets and jet substructure (4) TASI, June 2013 10
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Traditional W-tagging
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Figure 1: Signal and background distributions from simulation of pruned jet mass (left) and
t2/t1 (right) after analysis level cuts described in Section. 6. On the left plot, we also show the
ungroomed jet mass as dotted lines to underline the effect of pruning.

on mWhad+j and mW`+j are added.
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Figure 2: Leptonic W pT (left) and CA8 jet pT (right) for the muon channel in the 0+1 jet bin
category.

7 Background and Signal Estimation
The final discriminating variable in the analysis is the shape of the three-body m`nj distribution.
The signal region is defined around the W boson mass: a jet is considered a W-jet candidate if
its pruned mass mJ , computed from the sum of the four-momenta of the constituents surviving
the pruning, falls in the range 65 < mJ < 105 GeV.

The signal normalization and shape are estimated from simulation, with data-to-MC correc-

W
QCD
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7 Background and Signal Estimation
The final discriminating variable in the analysis is the shape of the three-body m`nj distribution.
The signal region is defined around the W boson mass: a jet is considered a W-jet candidate if
its pruned mass mJ , computed from the sum of the four-momenta of the constituents surviving
the pruning, falls in the range 65 < mJ < 105 GeV.

The signal normalization and shape are estimated from simulation, with data-to-MC correc-

W QCD

CMS-PAS-HIG-14-008 

Cut-based taggers trying to answer 

- Q: What’s the mass of my object?  
A: Grooming (pruning/SD): 
Remove soft and wide  
angle jet constituents 

- Q: Is there substructure?  
A: N-subjettiness ++: 
Distance between jet constituents 
and hard subjet axes 

If a human can think up such 
algorithms, I bet a machine can too 

- give DNN information it needs to 
design its own grooming/
substructure algorithms
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LoLa

4

E, px, py, pz

E, px, py, pz E, px, py, pz

W→qq?

DNN working with Lorentz vectors 
introduced for top-tagging by T. Plehn,  
G. Kasieczka et. Al (arXiv:1707.08966) 

- physics based deep neural network 

- does not: throw huge amounts of inputs 
into NN and eliminate through rankings 

- does: analyse jet constituents directly, 
teach NN distances in Minkowski space  

All substructure/grooming algorithms in 
CMS based on jet constituent 4-vectors 

- by giving DNN tools to do jet 
substructure, can we learn substructure 
from LoLa instead of other way around

https://arxiv.org/pdf/1707.08966.pdf
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4-layer DNN doing supervised learning with 
fixed-size input vectors 

- feed forward sequential network 

- Two novel layers (CoLa and LoLa) 
doing jet clustering and  
implementing Minkowski metric  
 

Technicalities 

- Keras w/ Theano backend ( on Amazon) 

- Loss function: Categorical crossentropy 
(output :W-jet/QCD probability) 

- ADAM optimiser (adapt learning rate of 
model parameters during training)

Network structure

5
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Four input features 

- 4-vectors of the N=20  
highest-pT jet constituents  
of AK8 jets 

4x20 matrix kμ,i for each jet

Input

6

E                            px 

py                                         pz

Deep-learned Top Tagging using Lorentz Invariance and Nothing Else

Anja Butter,1 Gregor Kasieczka,2 Tilman Plehn,1 and Michael Russell3

1Institut für Theoretische Physik, Universität Heidelberg, Germany
2Institute for Particle Physics, ETH Zürich, Switzerland

3School of Physics and Astronomy, University of Glasgow, Scotland

We introduce a new and highly e�cient tagger for hadronically decaying top quarks, based on
a deep neural network working with Lorentz vectors and the Minkowski metric. With its novel
machine learning setup and architecture it allows us to identify boosted top quarks not only from
calorimeter towers, but also including tracking information. We show how the performance of our
tagger compares with QCD-inspired and image-recognition approaches and find that it significantly
increases the performance for strongly boosted top quarks.

The classification of hadronic objects has become the
main driving force behind machine learning techniques
in LHC physics. The task is to identify the partonic
nature of large-area jets or fat jets. Such jets occur for
instance in boosted hadronic decays of Higgs bosons [1],
weak gauge bosons [2], or top quarks [3–11].

A widely debated, central question is how we can an-
alyze these jet substructure patterns using a range of
machine learning techniques. An early example were
wavelets, describing patterns of hadronic weak boson de-
cays [12, 13]. The most frequently used approach is
image recognition applied to calorimeter entries in the
azimuthal angle vs rapidity plane, so-called jet images.
They can be used to search for hadronic decays of weak
bosons [14–18] or top quarks [19, 20], or to distinguish
quark-like from gluon-like jets [21]. Another approach
is inspired by natural language recognition, applied to
decays of weak bosons [22].

Top taggers inspired by image recognition rely on con-
volutional networks (CNN) [20, 23], which work well for
numbers of pixels small enough to be analyzed by the net-
work. We have shown that they can outperform multi-
variate QCD-based taggers, but also that the CNN learns
all the appropriate sub-jet patterns [20]. A major prob-
lem arises when we include tracking information with
its much better experimental resolution, leading to too
many, too sparsely distributed pixels [21].

We propose a new approach to jet substructure using
machine learning: rather than relying on analogies to im-
age or natural language recognition we analyze the con-
stituents of the fat jet directly, only using the Lorentz
group and Minkowski space-time. For our DeepTo-
pLoLa tagger we introduce a combination layer (CoLa)
together with a Lorentz layer (LoLa) and two fully con-
nected layers forming a novel deep neural network (DNN)
architecture. In the standard setup the input 4-momenta
correspond to calorimeter towers [24]. However, unlike
other approaches theDeepTopLoLa tagger can trivially
be extended to include tracking information and particle
flow objects with their full experimental resolution.

This flexible setup allows us to study how much per-
formance gain tracking information actually gives. More-

over, it means that DeepTopLoLa can be immediately
included in state-of-the art ATLAS and CMS analyses
and can be combined with b-tagging.

In this letter we first introduce our new machine learn-
ing setup. Using standard fat jets from hadronic top de-
cays we compare its performance to multivariate QCD-
inspired tagging and an image-based convolutional net-
work [20]. We then extend the tagger to include particle
flow information and estimate the performance gain com-
pared to calorimeter information for mildly boosted and
strongly boosted top quarks.

Combination Layer — the basic constituents entering
any subjet analysis are a set of N measured 4-vectors
sorted by p

T

, for example organized as the matrix

(kµ,i) =

0

BB@

k
0,1 k

0,2 · · · k
0,N

k
1,1 k

1,2 · · · k
1,N

k
2,1 k

2,2 · · · k
2,N

k
3,1 k

3,2 · · · k
3,N

1

CCA . (1)

We show a typical jet image for a hadronic top decay in
Fig. 1. Inspired by the usual jet clustering we multiply
these 4-vectors with a matrix Cij , defining a Combina-

Figure 1. Jet image illustrating a signal event, showing 20
4-vectors kµ,i with an energy threshold k0 > 1 GeV on the
calorimeter level.
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Linear combinations similar to jet-clustering 

- Sum of all momenta 

- Each original constituent momenta 

- Linear combinations + trainable weights. 
Can make subjets!

Combination Layer (CoLa)

7

CoLaE.g for 2 constituents

! Can “weight” 
constituents away,  
reconstruct hard 

subjets → groomer
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Lorentz Layer (LoLa)

8

Minkowski metric 
explicitly used for  
m2 and d

Maps CoLa output onto 

- m2 + pT of each column (“jet”, constituents, hard subjets) 

- Energy of all constituents (with trainable weight) 

- Distance between all particles (2*min+ 2*sum) 
→ n-subjetiness

LoLa
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Overall performance

9

LoLa  
(full mass range)

BETTER

𝝉21

pT > 200 GeV

65 GeV < M < 105 GeV

𝝉21DDT

LoLa 
65 GeV-105 GeV 

Compare performance to most 
commonly used cut based V-taggers  

• LoLa performs significantly better 
than current baseline  

- 20% higher εS at given εB  
compared to best cut-based 

- no need for mass window, 
increased signal acceptance 

For two-W final state, 43% increase  
in signal efficiency* 

We all know DNNs do better.  
Whats next?

Work in progress

*B2G-17-001

http://cms.cern.ch/iCMS/analysisadmin/cadilines?line=B2G-17-001
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Beyond performance

10
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Three things to consider when making a DNN tagger:

- is the absolute performance better (compared to 
common methods, a standard BDT)?
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10

Output strongly correlated  
with pT/mass

Discriminant vs. pT

Work in progress
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pT  dependence

11

nominal

pT-weighted

Work in progress

pT-dependence is a problem because 

- signal efficiency is variable, requires 
working point scaling with pT 

- pT (tagger validation region) !=  
pT (signal region) 

One method to cope: reweight training set 
event-by-event to be flat in pT-space 

- passed as sample weights to training
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nominal

pT-weighted

nominal pT-weighted

Discriminant vs. pT Discriminant vs. pT

Such strategies yields loss in overall 
performance, but reduced pT-dependence 

No “truth” for which solution is better 
before running full analysis including 
systematics for pT-dependent tagging

Work in progress

Work in progressWork in progress

pT  dependence
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Mass sculpting

13

LoLa > 0.93

#MC events

Work in progress



Thea K. Aarrestad                                                             Lorentz Invariance Based DNN for W-tagging

Mass sculpting

13

LoLa > 0.93

#MC events

Work in progress Bulk of remaining 1% 
bkg jets are in  

W-mass window

Normalised
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Mass sculpting

13

LoLa > 0.93

#MC events

Work in progress Bulk of remaining 1% 
bkg jets are in  

W-mass window

Normalised

I smart DNN will learn W-mass 

- good! Clearly W-mass != q/g-jet mass 

Unfortunately, we often estimate background in 
mass sidebands 

- bad! After cut on tagger, mass is sculpted 
making background difficult to constrain 

Mass-dependence in itself not a problem, 
background rate uncertainties are 

- trade-off between efficiency and (analysis-
dependent) systematics. 

Hot topic in ML: adversarial NNs that penalise 
loss if mass is learned (see C. Shimmin et. Al) 

- loss in efficiency, gain in analysis sensitivity

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.96.074034
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Despite common beliefs, a DNN is NOT a black 
box 

- series of multiplications/additions and  
pre-computed activation functions 

- you can (and should) read out the weights of 
your model for each layer (or feature)* 

Does network learn something (un)expected? 

- with physics-based trainable weights like in 
LoLa, easier to disentangle 

Also allows you to prune your DNN 

- remove ~zero-weights from network. Reduces 
processing time with same performance

Model grooming

14

How are my features 
x weighted?

*model.layers[i].output 
  model.get_layer(layer_name).output
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Summary and outlook

The idea behind LoLa is to give DNN the rules of Minkowski space, jet clustering and 
substructure and let it do the rest 

analyse constituents directly with large set of trainable weights  

For use in tagging, absolute performance is not a sufficient measure 

- pT-dependence + mass-sculpting resilience may be equally important depending on 
the analysis performed 

- should strive to implement taggers in a full analysis chain before making final 
decisions (pT-reweighting, mass penalising, etc.) 

The question “What can we learn from the machine?” is getting more interesting than 
“What can we teach the machine?” 

- by probing layer-wise LoLa output, hope to learn something new about substructure!
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Backup
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Model

17

• 4 layer DNN doing supervised learning with  
fixed-size input vectors 

- feed forward sequential network 

- Two novel layers (CoLa and LoLa) implementing 
Minkowski metric and “substructure” calculations  
(see later) and two fully connected layers 

• Technicalities 

- Keras with Theano backend 

- Loss function: categorical crossentropy 

- ADAM optimiser (adapt learning rate of model 
parameters during training) 

• Train 200k + Test 60k + Val 60k on AWS 

co_la_1_input: InputLayer
input:

output:

(None, 4, 20)

(None, 4, 20)

co_la_1: CoLa
input:

output:

(None, 4, 20)

(None, 4, 35)

lo_la_1: LoLa
input:

output:

(None, 4, 35)

(None, 7, 35)

flatten_1: Flatten
input:

output:

(None, 7, 35)

(None, 245)

dense_1: Dense
input:

output:

(None, 245)

(None, 100)

activation_1: Activation
input:

output:

(None, 100)

(None, 100)

dense_2: Dense
input:

output:

(None, 100)

(None, 50)

activation_2: Activation
input:

output:

(None, 50)

(None, 50)

dense_3: Dense
input:

output:

(None, 50)

(None, 2)

Input

CoLa

LoLa

Fully 
Connected 

I

Fully 
Connected 

II

Output
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Combination layer(CoLa):  
• Sum of all momenta 
• Each original momentum 
• 15 trainable weights C

Deep-learned Top Tagging using Lorentz Invariance and Nothing Else

Anja Butter,1 Gregor Kasieczka,2 Tilman Plehn,1 and Michael Russell3

1Institut für Theoretische Physik, Universität Heidelberg, Germany
2Institute for Particle Physics, ETH Zürich, Switzerland

3School of Physics and Astronomy, University of Glasgow, Scotland

We introduce a new and highly e�cient tagger for hadronically decaying top quarks, based on
a deep neural network working with Lorentz vectors and the Minkowski metric. With its novel
machine learning setup and architecture it allows us to identify boosted top quarks not only from
calorimeter towers, but also including tracking information. We show how the performance of our
tagger compares with QCD-inspired and image-recognition approaches and find that it significantly
increases the performance for strongly boosted top quarks.

The classification of hadronic objects has become the
main driving force behind machine learning techniques
in LHC physics. The task is to identify the partonic
nature of large-area jets or fat jets. Such jets occur for
instance in boosted hadronic decays of Higgs bosons [1],
weak gauge bosons [2], or top quarks [3–11].

A widely debated, central question is how we can an-
alyze these jet substructure patterns using a range of
machine learning techniques. An early example were
wavelets, describing patterns of hadronic weak boson de-
cays [12, 13]. The most frequently used approach is
image recognition applied to calorimeter entries in the
azimuthal angle vs rapidity plane, so-called jet images.
They can be used to search for hadronic decays of weak
bosons [14–18] or top quarks [19, 20], or to distinguish
quark-like from gluon-like jets [21]. Another approach
is inspired by natural language recognition, applied to
decays of weak bosons [22].

Top taggers inspired by image recognition rely on con-
volutional networks (CNN) [20, 23], which work well for
numbers of pixels small enough to be analyzed by the net-
work. We have shown that they can outperform multi-
variate QCD-based taggers, but also that the CNN learns
all the appropriate sub-jet patterns [20]. A major prob-
lem arises when we include tracking information with
its much better experimental resolution, leading to too
many, too sparsely distributed pixels [21].

We propose a new approach to jet substructure using
machine learning: rather than relying on analogies to im-
age or natural language recognition we analyze the con-
stituents of the fat jet directly, only using the Lorentz
group and Minkowski space-time. For our DeepTo-
pLoLa tagger we introduce a combination layer (CoLa)
together with a Lorentz layer (LoLa) and two fully con-
nected layers forming a novel deep neural network (DNN)
architecture. In the standard setup the input 4-momenta
correspond to calorimeter towers [24]. However, unlike
other approaches theDeepTopLoLa tagger can trivially
be extended to include tracking information and particle
flow objects with their full experimental resolution.

This flexible setup allows us to study how much per-
formance gain tracking information actually gives. More-

over, it means that DeepTopLoLa can be immediately
included in state-of-the art ATLAS and CMS analyses
and can be combined with b-tagging.

In this letter we first introduce our new machine learn-
ing setup. Using standard fat jets from hadronic top de-
cays we compare its performance to multivariate QCD-
inspired tagging and an image-based convolutional net-
work [20]. We then extend the tagger to include particle
flow information and estimate the performance gain com-
pared to calorimeter information for mildly boosted and
strongly boosted top quarks.

Combination Layer — the basic constituents entering
any subjet analysis are a set of N measured 4-vectors
sorted by p

T

, for example organized as the matrix

(kµ,i) =

0

BB@

k
0,1 k

0,2 · · · k
0,N

k
1,1 k

1,2 · · · k
1,N

k
2,1 k

2,2 · · · k
2,N

k
3,1 k

3,2 · · · k
3,N

1

CCA . (1)

We show a typical jet image for a hadronic top decay in
Fig. 1. Inspired by the usual jet clustering we multiply
these 4-vectors with a matrix Cij , defining a Combina-

Figure 1. Jet image illustrating a signal event, showing 20
4-vectors kµ,i with an energy threshold k0 > 1 GeV on the
calorimeter level.
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Figure 2. Number of constituents (left) and mean of the transverse momentum (right) of the ranked constituents available as
4-vectors in Eq.(1). We show 4-vectors for the top signal from calorimeter cells or jet images (dashed) and from calorimeter
and tracker information combined through particle flow (solid).

tion Layer

kµ,i
CoLa�! ekµ,j = kµ,i Cij . (2)

It returns M 4-vectors k̃j , so i = 1 ... N and j = 1 ... M .
For illustration purposes, we look at a top decay through
an intermediate W -boson with two on-shell conditions

k̃2µ,1 = (kµ,1 + kµ,2 + kµ,3)
2 = m2

t

k̃2µ,2 = (kµ,1 + kµ,2)
2 = m2

W . (3)

They correspond to non-zero entries

C
11

= C
21

= C
31

and C
12

= C
22

. (4)

In general, the CoLa matrix in our neural network has
the trainable form

C =

0

BBBB@

1 1 0 · · · 0 C
1,N+2

· · · C
1,M

1 0 1
... C

2,N+2

· · · C
2,M

...
...

...
. . . 0

...
...

1 0 0 · · · 1 CN,N+2

· · · CN,M

1

CCCCA
. (5)

It guarantees that the set of M 4-momenta k̃j includes

1. the sum of all momenta, i.e. the fat jet momentum;

2. each original momentum ki;

3. a trainable set of M � (N +1) linear combinations.

These k̃j will be analyzed by a DNN. For our numerical
study we use M � (N + 1) = 15 trainable combinations.

Lorentz Layer — from fundamental theory we know
that the relevant distance measure between two substruc-
ture objects is the Minkowski metric. We use it to con-
struct a weight function which makes it easier for the

DNN to learn the underlying features.⇤ The Lorentz
layer as the second part of the DNN first transforms
the M 4-vectors k̃j into the same number of physics-

motivated objects k̂j ,

k̃j
LoLa�! k̂j =

0

BBB@

m2(k̃j)
pT (k̃j)

w(E)

jm E(k̃m)

w(d)
jm d2jm

1

CCCA
. (6)

The first two k̂j entries in Eq.(6) map individual k̃j onto
their invariant mass and transverse momentum. The
next entries combine all k̃m with a fixed k̃j , including

a trainable set of weights w(E,d)
jm . This combination can

be a sum over m or the minimum over m for fixed j.
For the last entry we actually include four copies, two
using the sum and two using the minimum, with inde-
pendently trainable weights. The first and last entries in
Eq.(6) explicitly use the Minkowski distance,

d2jm = (k̃j � k̃m)µ gµ⌫ (k̃j � k̃m)⌫ . (7)

Performance — to compare the DeepTopLoLa tag-
ger to established top taggers we simulate a hadronic tt̄
sample and a QCD di-jet sample with Pythia8 [25] for
the 14 TeV LHC [26]. We ignore multiple interactions,
which can eventually be removed. Moreover, we assume
that our top tagger can be trained on a pure sample of
lepton-hadron top pair events with an identified leptonic
top decay.

⇤
We are grateful to Johann Brehmer for pointing out that this

approach limits us to fat jets far from black holes.
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top decay.
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Input:  
4-vectors of N = 20  

highest pT jet 
constituents  
of AK8 jets  

Lorentz layer(LoLa):  
Compute kinematics for 

CoLa output. 
 1+4 additional trainable  

weights

Summing and weighting all 
constituent should allow 

network to calculate subjet 
axes 

d2jm and m2 use Minkowski 
distance 

d2jm = (k̃j � k̃m)µg
µ⌫(k̃j � k̃m)⌫
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Signal 

- 320k fully merged hadronic W-jets (AK8) 
from W’→WZ →4q (MW’ = 0.6-4.5 TeV) 

- why small training set?→ Do not mix 
signal samples until one is understood 
(can change with W polarisation etc.) 

Background 

- QCD Pythia8 non-W jets 

- Danger: Jet substructure strongly 
depends on shower generators (different 
description of gluon radiation). Different 
QCD MC might yield different results 

Disclaimer: The following contains student 
work in progress studies and not CMS 
approved results

The basic setup

19

Work in progress

Work in progress

Number of jet constituents

Typical W-tag window: 
65-105 GeV
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What does LoLa learn?

20

Combination layer(CoLa):  
• Sum of all momenta

Deep-learned Top Tagging using Lorentz Invariance and Nothing Else

Anja Butter,1 Gregor Kasieczka,2 Tilman Plehn,1 and Michael Russell3

1Institut für Theoretische Physik, Universität Heidelberg, Germany
2Institute for Particle Physics, ETH Zürich, Switzerland

3School of Physics and Astronomy, University of Glasgow, Scotland

We introduce a new and highly e�cient tagger for hadronically decaying top quarks, based on
a deep neural network working with Lorentz vectors and the Minkowski metric. With its novel
machine learning setup and architecture it allows us to identify boosted top quarks not only from
calorimeter towers, but also including tracking information. We show how the performance of our
tagger compares with QCD-inspired and image-recognition approaches and find that it significantly
increases the performance for strongly boosted top quarks.

The classification of hadronic objects has become the
main driving force behind machine learning techniques
in LHC physics. The task is to identify the partonic
nature of large-area jets or fat jets. Such jets occur for
instance in boosted hadronic decays of Higgs bosons [1],
weak gauge bosons [2], or top quarks [3–11].

A widely debated, central question is how we can an-
alyze these jet substructure patterns using a range of
machine learning techniques. An early example were
wavelets, describing patterns of hadronic weak boson de-
cays [12, 13]. The most frequently used approach is
image recognition applied to calorimeter entries in the
azimuthal angle vs rapidity plane, so-called jet images.
They can be used to search for hadronic decays of weak
bosons [14–18] or top quarks [19, 20], or to distinguish
quark-like from gluon-like jets [21]. Another approach
is inspired by natural language recognition, applied to
decays of weak bosons [22].

Top taggers inspired by image recognition rely on con-
volutional networks (CNN) [20, 23], which work well for
numbers of pixels small enough to be analyzed by the net-
work. We have shown that they can outperform multi-
variate QCD-based taggers, but also that the CNN learns
all the appropriate sub-jet patterns [20]. A major prob-
lem arises when we include tracking information with
its much better experimental resolution, leading to too
many, too sparsely distributed pixels [21].

We propose a new approach to jet substructure using
machine learning: rather than relying on analogies to im-
age or natural language recognition we analyze the con-
stituents of the fat jet directly, only using the Lorentz
group and Minkowski space-time. For our DeepTo-
pLoLa tagger we introduce a combination layer (CoLa)
together with a Lorentz layer (LoLa) and two fully con-
nected layers forming a novel deep neural network (DNN)
architecture. In the standard setup the input 4-momenta
correspond to calorimeter towers [24]. However, unlike
other approaches theDeepTopLoLa tagger can trivially
be extended to include tracking information and particle
flow objects with their full experimental resolution.

This flexible setup allows us to study how much per-
formance gain tracking information actually gives. More-

over, it means that DeepTopLoLa can be immediately
included in state-of-the art ATLAS and CMS analyses
and can be combined with b-tagging.

In this letter we first introduce our new machine learn-
ing setup. Using standard fat jets from hadronic top de-
cays we compare its performance to multivariate QCD-
inspired tagging and an image-based convolutional net-
work [20]. We then extend the tagger to include particle
flow information and estimate the performance gain com-
pared to calorimeter information for mildly boosted and
strongly boosted top quarks.

Combination Layer — the basic constituents entering
any subjet analysis are a set of N measured 4-vectors
sorted by p

T

, for example organized as the matrix

(kµ,i) =

0

BB@

k
0,1 k

0,2 · · · k
0,N

k
1,1 k

1,2 · · · k
1,N

k
2,1 k

2,2 · · · k
2,N

k
3,1 k

3,2 · · · k
3,N

1

CCA . (1)

We show a typical jet image for a hadronic top decay in
Fig. 1. Inspired by the usual jet clustering we multiply
these 4-vectors with a matrix Cij , defining a Combina-

Figure 1. Jet image illustrating a signal event, showing 20
4-vectors kµ,i with an energy threshold k0 > 1 GeV on the
calorimeter level.
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tion Layer

kµ,i
CoLa�! ekµ,j = kµ,i Cij . (2)

It returns M 4-vectors k̃j , so i = 1 ... N and j = 1 ... M .
For illustration purposes, we look at a top decay through
an intermediate W -boson with two on-shell conditions

k̃2µ,1 = (kµ,1 + kµ,2 + kµ,3)
2 = m2

t

k̃2µ,2 = (kµ,1 + kµ,2)
2 = m2

W . (3)

They correspond to non-zero entries

C
11

= C
21

= C
31

and C
12

= C
22

. (4)

In general, the CoLa matrix in our neural network has
the trainable form

C =

0

BBBB@

1 1 0 · · · 0 C
1,N+2

· · · C
1,M

1 0 1
... C

2,N+2

· · · C
2,M

...
...

...
. . . 0

...
...

1 0 0 · · · 1 CN,N+2

· · · CN,M

1

CCCCA
. (5)

It guarantees that the set of M 4-momenta k̃j includes

1. the sum of all momenta, i.e. the fat jet momentum;

2. each original momentum ki;

3. a trainable set of M � (N +1) linear combinations.

These k̃j will be analyzed by a DNN. For our numerical
study we use M � (N + 1) = 15 trainable combinations.

Lorentz Layer — from fundamental theory we know
that the relevant distance measure between two substruc-
ture objects is the Minkowski metric. We use it to con-
struct a weight function which makes it easier for the

DNN to learn the underlying features.⇤ The Lorentz
layer as the second part of the DNN first transforms
the M 4-vectors k̃j into the same number of physics-

motivated objects k̂j ,

k̃j
LoLa�! k̂j =

0

BBB@

m2(k̃j)
pT (k̃j)

w(E)

jm E(k̃m)

w(d)
jm d2jm

1

CCCA
. (6)

The first two k̂j entries in Eq.(6) map individual k̃j onto
their invariant mass and transverse momentum. The
next entries combine all k̃m with a fixed k̃j , including

a trainable set of weights w(E,d)
jm . This combination can

be a sum over m or the minimum over m for fixed j.
For the last entry we actually include four copies, two
using the sum and two using the minimum, with inde-
pendently trainable weights. The first and last entries in
Eq.(6) explicitly use the Minkowski distance,

d2jm = (k̃j � k̃m)µ gµ⌫ (k̃j � k̃m)⌫ . (7)

Performance — to compare the DeepTopLoLa tag-
ger to established top taggers we simulate a hadronic tt̄
sample and a QCD di-jet sample with Pythia8 [25] for
the 14 TeV LHC [26]. We ignore multiple interactions,
which can eventually be removed. Moreover, we assume
that our top tagger can be trained on a pure sample of
lepton-hadron top pair events with an identified leptonic
top decay.

⇤
We are grateful to Johann Brehmer for pointing out that this

approach limits us to fat jets far from black holes.
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It guarantees that the set of M 4-momenta k̃j includes

1. the sum of all momenta, i.e. the fat jet momentum;

2. each original momentum ki;

3. a trainable set of M � (N +1) linear combinations.

These k̃j will be analyzed by a DNN. For our numerical
study we use M � (N + 1) = 15 trainable combinations.

Lorentz Layer — from fundamental theory we know
that the relevant distance measure between two substruc-
ture objects is the Minkowski metric. We use it to con-
struct a weight function which makes it easier for the

DNN to learn the underlying features.⇤ The Lorentz
layer as the second part of the DNN first transforms
the M 4-vectors k̃j into the same number of physics-
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The first two k̂j entries in Eq.(6) map individual k̃j onto
their invariant mass and transverse momentum. The
next entries combine all k̃m with a fixed k̃j , including

a trainable set of weights w(E,d)
jm . This combination can

be a sum over m or the minimum over m for fixed j.
For the last entry we actually include four copies, two
using the sum and two using the minimum, with inde-
pendently trainable weights. The first and last entries in
Eq.(6) explicitly use the Minkowski distance,

d2jm = (k̃j � k̃m)µ gµ⌫ (k̃j � k̃m)⌫ . (7)

Performance — to compare the DeepTopLoLa tag-
ger to established top taggers we simulate a hadronic tt̄
sample and a QCD di-jet sample with Pythia8 [25] for
the 14 TeV LHC [26]. We ignore multiple interactions,
which can eventually be removed. Moreover, we assume
that our top tagger can be trained on a pure sample of
lepton-hadron top pair events with an identified leptonic
top decay.

⇤
We are grateful to Johann Brehmer for pointing out that this

approach limits us to fat jets far from black holes.

Input:  
4-vectors of N = 20  

highest pT jet 
constituents  

Lorentz layer(LoLa):  
Compute kinematics for 

CoLa output. 

Summing and weighting all 
constituent should allow 

network to calculate subjet 
axes 

d2jm and m2 use Minkowski 
distance 

d2jm = (k̃j � k̃m)µg
µ⌫(k̃j � k̃m)⌫

Ei … EN 
px 
py  
pz

HOW DOES THIS BIAS MASS AND PT?!
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• Compare nominal training to training after 
removing variables sensitive to mass and pT 

• Remove CoLa column that passes  
sum of all 4-momentum (“jet” 4-vector) 

- not much impact on overall performance 

- not much information taken from LoLa  
“n-subjettiness” 

• Remove Lola mass and pT variables reduce 
performance significantly 

- worst when removing jet 4-vector, mass 
and pT

What does LoLa learn?

21

Work in progress



Thea K. Aarrestad                                                             Lorentz Invariance Based DNN for W-tagging

LoLas future

22

WZ production

… but transverse channels dominate the SM cross section

q′

q Z

Wlarge cross section
due to t-channel singularity

(only there for transverse)

cross sections with standard acceptance cuts:
�
tot

�
LL

�
LL

/�
tot

8 TeV 12 pb 0.73 pb
6%

13 TeV 25 pb 1.5 pb

( BR for fully-leptonic decay not included                                              )BR(WZ ! (`⌫)(``)) ' 1.5%

Asm + bsm
LL (qq̄ ! WZ)

Asm
LL(qq̄ ! WZ)

⇠ 1 + a(3)q E2

WZ production

q′

q Z

W
W

q′

q Z

W

✦ small background

Clean fully-leptonic final state: qq ! WZ ! (`⌫)(``)

✦ systematic uncertainties under control (   few %)  
                                                                               [ATLAS Phys. Rev. D 93 (2016)]

.

Energy enhanced new-physics effects in longitudinal channel
Study LoLa  output column-wise to 
understand what LoLa is learning 

- picking up substructure or not? 

Study discriminating power for longitudinally 
versus transversally polarised W bosons 
→WT vs WL tagger? 

As part of fun 

- train LoLa to do Pythia QCD vs. Herwig  
to understand where shower differences 
arise? 
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Simulated Samples

3
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0.2

0.25
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0.4

0.45 Top Jets Z Jets
W Jets H Jets
Light Jets

 < 1.5 TeV
T

0.5 TeV < Jet p

 > 10 GeVSDJet m

 (13 TeV)CMS             Simulation Preliminary

Soft drop mass distributions for the simulated samples 
used in this analysis.  Samples of boosted top quark jets, 

W boson jets, Z boson jets, and H boson jets are 
obtained from samples of heavy resonances (RS KK 

gluon, Z’, and RS graviton) which decay to those 
particles.  The  light-flavor jet background is obtained 

from a sample of simulated QCD multijet events.

• Remove soft, wide-angle radiation 

- recluster jet with C-A, remove recombination if  
 
 
                                    and

Pruning

23

What’s the mass of my object?

• Remove all soft emission 

- decluster with C-A, remove recombination if

Modified Mass Drop Tagger (aka Softdrop, β=0)

7
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Figure 1: Signal and background distributions from simulation of pruned jet mass (left) and
t2/t1 (right) after analysis level cuts described in Section. 6. On the left plot, we also show the
ungroomed jet mass as dotted lines to underline the effect of pruning.

on mWhad+j and mW`+j are added.
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Figure 2: Leptonic W pT (left) and CA8 jet pT (right) for the muon channel in the 0+1 jet bin
category.

7 Background and Signal Estimation
The final discriminating variable in the analysis is the shape of the three-body m`nj distribution.
The signal region is defined around the W boson mass: a jet is considered a W-jet candidate if
its pruned mass mJ , computed from the sum of the four-momenta of the constituents surviving
the pruning, falls in the range 65 < mJ < 105 GeV.

The signal normalization and shape are estimated from simulation, with data-to-MC correc-

W
QCD

CMS-PAS-HIG-14-008 

min(pT1, pT2)

pT1 + pT2
< 0.1 �1,2 > 0.5 · 2m

pT

min(pT1, pT2)

pT1 + pT2
< 0.1

arXiv:1307.0007 

 arxiv:1402.2657

arxiv:0912.0033 

CMS DP-2017/026

http://cds.cern.ch/record/2001192?ln=en
https://arxiv.org/abs/1307.0007
https://arxiv.org/pdf/1402.2657v2.pdf
https://arxiv.org/abs/0912.0033
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• How compatible jet is with having N axis 

- pT-weighted distance between constituents and 
N axes 

- small 𝝉2/𝝉1: more two- than one-prong like

N-subjettiness  𝝉21

24

Can I peak inside the jet?

• Sensitive to N-particle correlations within jet 

- like 𝝉2/𝝉1 , but avoid definition of subjet axes 

- less dependent on pT and pT2/m2

Ratio of Energy Correlation Functions N2

7
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7 Background and Signal Estimation
The final discriminating variable in the analysis is the shape of the three-body m`nj distribution.
The signal region is defined around the W boson mass: a jet is considered a W-jet candidate if
its pruned mass mJ , computed from the sum of the four-momenta of the constituents surviving
the pruning, falls in the range 65 < mJ < 105 GeV.

The signal normalization and shape are estimated from simulation, with data-to-MC correc-

W QCD

CMS-PAS-HIG-14-008 

3

Figure 1: 𝑁2 distribution for QCD, H, Z, or W jets. The different jet types are required to 
be the leading AK8 jet with 𝑝𝑇 > 200 GeV and 𝑚𝑆𝐷 > 40 GeV.

W QCDZH

N2 = 2e3
(1e2)2

pairwise angles between n constituents

JHEP12(2016)153

2.1 Energy correlation functions and N-subjettiness

The energy correlation functions [74] are a convenient basis of observables for probing

multi-prong substructure within a jet. In this paper, we use the 2-, 3-, and 4-point energy

correlation functions, defined as4

e(β)2 =
∑

1≤i<j≤nJ

zizj θ
β
ij ,

e(β)3 =
∑

1≤i<j<k≤nJ

zizjzk θ
β
ijθ

β
ikθ

β
jk ,

e(β)4 =
∑

1≤i<j<k<ℓ≤nJ

zizjzkzℓ θ
β
ijθ

β
ikθ

β
jkθ

β
iℓθ

β
jℓθ

β
kℓ , (2.1)

where nJ is the number of particles in the jet. The generalization to higher-point correlators

is straightforward, though we will not use them here. For simplicity, we often drop the

explicit angular exponent β, writing the observable as en. This simplified notation will also

be used for other observables introduced in the text.

It is convenient to work with dimensionless observables, written in terms of a generic

energy fraction variable, z, and a generic angular variable, θ. The precise definitions of

the energy fraction and angle can be chosen depending on context and do not affect our

power-counting arguments. For the case of pp collisions at the LHC, which is the focus of

our later studies, we work with longitudinally boost-invariant variables,

zi ≡
pT i∑

j∈jet pTj
, θ2ij ≡ R2

ij = (φi − φj)
2 + (yi − yj)

2 , (2.2)

where pT i, φi, and yi are the transverse momentum, azimuthal angle, and rapidity of

particle i, respectively. Two other measures intended for e+e− collisions are available in

the EnergyCorrelator FastJet contrib [84, 85]. The first is a definition based strictly

on energies and opening angles,

zi ≡
Ei

EJ
, θ2ij ≡ Θ2

ij , (2.3)

where EJ is the total jet energy, and Θij is the Euclidean angle between the 3-momenta p⃗i
and p⃗j . There is an alternative definition in terms of energies and Mandelstam invariants,

zi ≡
Ei

EJ
, θ2ij ≡

2pi · pj
EiEj

, (2.4)

which reduces to eq. (2.3) in the collinear limit but is easier for analytic calculations.

From eq. (2.1), we see that the n-point energy correlation functions vanish in the

soft and collinear limits, and therefore are natural resolution variables for (n − 1)-prong

substructure. A number of powerful 2-prong discriminants have been formed from the

energy correlation functions [65, 74], namely

C(β)
2 =

e(β)3

(e(β)2 )2
, D(β)

2 =
e(β)3

(e(β)2 )3
, D(α,β)

2 =
e(α)3

(e(β)2 )3α/β
. (2.5)

4We use the normalized dimensionless definition denoted with a lower case e [65]. This is related to the

original dimensionful definition in ref. [74] by e(β)n = ECF(n,β)/ (ECF(1,β))n .

– 4 –

arxiv:1305.0007 

arxiv:1011.2268 

http://cds.cern.ch/record/2001192?ln=en
https://arxiv.org/abs/1305.0007
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1 Introduction

The study of jet substructure has significantly matured over the past five years [? ? ? ],

with numerous techniques proposed to tag boosted objects [], distinguish quark from gluon

jets [], and mitigate the e↵ects of jet contamination []. Many of these techniques have found

successful applications in jet studies at the Large Hadron Collider (LHC) [? ? ? ? ], and jet

substructure is likely to become even more relevant with the anticipated increase in energy

and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure, there

is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These

include more traditional jet mass and jet shape distributions [? ? ? ? ? ? ] as well as

more sophisticated substructure techniques [? ? ? ? ? ? ? ? ]. Recently, Refs. [? ? ]

considered the analytic behavior of three of the most commonly used jet tagging/grooming

methods—trimming [? ], pruning [? ? ], and mass drop tagging [? ]. Focusing on groomed

jet mass distributions, this study showed how their qualitative and quantitative features

could be understood with the help of logarithmic resummation. Armed with this analytic

understanding of jet substructure, the authors of Ref. [? ] developed the modified mass drop

tagger (mMDT) which exhibits some surprising features in the resulting groomed jet mass

distribution, including the absence of Sudakov double logarithms, the absence of non-global

logarithms [? ], and a high degree of insensitivity to non-perturbative e↵ects.

In this paper, we introduce a new tagging/grooming method called “soft drop decluster-

ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like

any grooming method, soft drop declustering removes wide-angle soft radiation from a jet in

order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying

event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two

constituents, the soft drop procedure removes the softer constituent unless

Soft Drop Condition:
min(pT1, pT2)

pT1 + pT2
> zcut

✓
�R12

R0

◆�

, (1.1)

where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an

angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and �, with � ! 1 returning back an ungroomed jet. As

we explain in Sec. 2, this procedure can be extended to jets with more than two constituents

with the help of recursive pairwise declustering.1

Following the spirit of Ref. [? ], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent � is varied. There

are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1
The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [? ], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering

considered here).
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substructure is likely to become even more relevant with the anticipated increase in energy

and luminosity for Run II of the LHC.
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methods—trimming [? ], pruning [? ? ], and mass drop tagging [? ]. Focusing on groomed

jet mass distributions, this study showed how their qualitative and quantitative features

could be understood with the help of logarithmic resummation. Armed with this analytic

understanding of jet substructure, the authors of Ref. [? ] developed the modified mass drop

tagger (mMDT) which exhibits some surprising features in the resulting groomed jet mass

distribution, including the absence of Sudakov double logarithms, the absence of non-global

logarithms [? ], and a high degree of insensitivity to non-perturbative e↵ects.
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where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an

angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and �, with � ! 1 returning back an ungroomed jet. As

we explain in Sec. 2, this procedure can be extended to jets with more than two constituents

with the help of recursive pairwise declustering.1

Following the spirit of Ref. [? ], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent � is varied. There

are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1
The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [? ], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering
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1 Introduction

The study of jet substructure has significantly matured over the past five years [? ? ? ],

with numerous techniques proposed to tag boosted objects [], distinguish quark from gluon

jets [], and mitigate the e↵ects of jet contamination []. Many of these techniques have found

successful applications in jet studies at the Large Hadron Collider (LHC) [? ? ? ? ], and jet

substructure is likely to become even more relevant with the anticipated increase in energy

and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure, there

is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These

include more traditional jet mass and jet shape distributions [? ? ? ? ? ? ] as well as

more sophisticated substructure techniques [? ? ? ? ? ? ? ? ]. Recently, Refs. [? ? ]

considered the analytic behavior of three of the most commonly used jet tagging/grooming

methods—trimming [? ], pruning [? ? ], and mass drop tagging [? ]. Focusing on groomed

jet mass distributions, this study showed how their qualitative and quantitative features

could be understood with the help of logarithmic resummation. Armed with this analytic

understanding of jet substructure, the authors of Ref. [? ] developed the modified mass drop

tagger (mMDT) which exhibits some surprising features in the resulting groomed jet mass

distribution, including the absence of Sudakov double logarithms, the absence of non-global

logarithms [? ], and a high degree of insensitivity to non-perturbative e↵ects.

In this paper, we introduce a new tagging/grooming method called “soft drop decluster-

ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like

any grooming method, soft drop declustering removes wide-angle soft radiation from a jet in

order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying

event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two

constituents, the soft drop procedure removes the softer constituent unless

Soft Drop Condition:
min(pT1, pT2)

pT1 + pT2
> zcut

✓
�R12

R0

◆�

, (1.1)

where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an

angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and �, with � ! 1 returning back an ungroomed jet. As

we explain in Sec. 2, this procedure can be extended to jets with more than two constituents

with the help of recursive pairwise declustering.1

Following the spirit of Ref. [? ], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent � is varied. There

are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1
The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [? ], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering

considered here).
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The study of jet substructure has significantly matured over the past five years [? ? ? ],

with numerous techniques proposed to tag boosted objects [], distinguish quark from gluon

jets [], and mitigate the e↵ects of jet contamination []. Many of these techniques have found

successful applications in jet studies at the Large Hadron Collider (LHC) [? ? ? ? ], and jet

substructure is likely to become even more relevant with the anticipated increase in energy

and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure, there

is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These

include more traditional jet mass and jet shape distributions [? ? ? ? ? ? ] as well as

more sophisticated substructure techniques [? ? ? ? ? ? ? ? ]. Recently, Refs. [? ? ]

considered the analytic behavior of three of the most commonly used jet tagging/grooming

methods—trimming [? ], pruning [? ? ], and mass drop tagging [? ]. Focusing on groomed

jet mass distributions, this study showed how their qualitative and quantitative features

could be understood with the help of logarithmic resummation. Armed with this analytic

understanding of jet substructure, the authors of Ref. [? ] developed the modified mass drop

tagger (mMDT) which exhibits some surprising features in the resulting groomed jet mass

distribution, including the absence of Sudakov double logarithms, the absence of non-global

logarithms [? ], and a high degree of insensitivity to non-perturbative e↵ects.

In this paper, we introduce a new tagging/grooming method called “soft drop decluster-

ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like

any grooming method, soft drop declustering removes wide-angle soft radiation from a jet in

order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying

event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two

constituents, the soft drop procedure removes the softer constituent unless

Soft Drop Condition:
min(pT1, pT2)

pT1 + pT2
> zcut
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, (1.1)

where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an

angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and �, with � ! 1 returning back an ungroomed jet. As

we explain in Sec. 2, this procedure can be extended to jets with more than two constituents

with the help of recursive pairwise declustering.1

Following the spirit of Ref. [? ], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent � is varied. There

are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1
The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [? ], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering

considered here).
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1 Introduction

The study of jet substructure has significantly matured over the past five years [? ? ? ],

with numerous techniques proposed to tag boosted objects [], distinguish quark from gluon

jets [], and mitigate the e↵ects of jet contamination []. Many of these techniques have found

successful applications in jet studies at the Large Hadron Collider (LHC) [? ? ? ? ], and jet

substructure is likely to become even more relevant with the anticipated increase in energy

and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure, there

is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These

include more traditional jet mass and jet shape distributions [? ? ? ? ? ? ] as well as

more sophisticated substructure techniques [? ? ? ? ? ? ? ? ]. Recently, Refs. [? ? ]

considered the analytic behavior of three of the most commonly used jet tagging/grooming

methods—trimming [? ], pruning [? ? ], and mass drop tagging [? ]. Focusing on groomed

jet mass distributions, this study showed how their qualitative and quantitative features

could be understood with the help of logarithmic resummation. Armed with this analytic

understanding of jet substructure, the authors of Ref. [? ] developed the modified mass drop

tagger (mMDT) which exhibits some surprising features in the resulting groomed jet mass

distribution, including the absence of Sudakov double logarithms, the absence of non-global

logarithms [? ], and a high degree of insensitivity to non-perturbative e↵ects.

In this paper, we introduce a new tagging/grooming method called “soft drop decluster-

ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like

any grooming method, soft drop declustering removes wide-angle soft radiation from a jet in

order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying

event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two

constituents, the soft drop procedure removes the softer constituent unless

Soft Drop Condition:
min(pT1, pT2)

pT1 + pT2
> zcut

✓
�R12

R0

◆�

, (1.1)

where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an

angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and �, with � ! 1 returning back an ungroomed jet. As

we explain in Sec. 2, this procedure can be extended to jets with more than two constituents

with the help of recursive pairwise declustering.1

Following the spirit of Ref. [? ], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent � is varied. There

are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1
The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [? ], where a variant

of Eq. (1.1) with zcut = 1/2 and � = 3/2 is tested at each stage of recursive clustering (unlike declustering

considered here).
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with numerous techniques proposed to tag boosted objects [], distinguish quark from gluon

jets [], and mitigate the e↵ects of jet contamination []. Many of these techniques have found

successful applications in jet studies at the Large Hadron Collider (LHC) [? ? ? ? ], and jet

substructure is likely to become even more relevant with the anticipated increase in energy

and luminosity for Run II of the LHC.
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is a growing catalog of first-principles calculations using perturbative QCD (pQCD). These

include more traditional jet mass and jet shape distributions [? ? ? ? ? ? ] as well as

more sophisticated substructure techniques [? ? ? ? ? ? ? ? ]. Recently, Refs. [? ? ]

considered the analytic behavior of three of the most commonly used jet tagging/grooming

methods—trimming [? ], pruning [? ? ], and mass drop tagging [? ]. Focusing on groomed

jet mass distributions, this study showed how their qualitative and quantitative features

could be understood with the help of logarithmic resummation. Armed with this analytic

understanding of jet substructure, the authors of Ref. [? ] developed the modified mass drop

tagger (mMDT) which exhibits some surprising features in the resulting groomed jet mass

distribution, including the absence of Sudakov double logarithms, the absence of non-global

logarithms [? ], and a high degree of insensitivity to non-perturbative e↵ects.

In this paper, we introduce a new tagging/grooming method called “soft drop decluster-

ing”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure. Like
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order to mitigate the e↵ects of contamination from initial state radiation (ISR), underlying

event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0 with only two
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where pT i are the transverse momenta of the constituents with respect to the beam, �R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and � is an

angular exponent. By construction, Eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and �, with � ! 1 returning back an ungroomed jet. As

we explain in Sec. 2, this procedure can be extended to jets with more than two constituents

with the help of recursive pairwise declustering.1

Following the spirit of Ref. [? ], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent � is varied. There

are two di↵erent regimes of interest. For � > 0, soft drop declustering removes soft radiation

1
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Figure 11: Performance of soft drop as a boosted W tagger. Top left: signal e�ciency

versus background mistag for jets with pT > 500 GeV. Each curve is obtained by fixing the

value of �, sweeping the value of zcut, and counting jets with groomed mass in the range

[70 GeV, 90 GeV]. Top right: Values of zcut for as a function of the e�ciency, for given �.

Bottom: mass distribution of signal (left) and background (right) jets before and after soft

drop. For each curve, the value of � is shown in the legend, while the value of zcut is the one

that gives a 35% signal e�ciency.
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• pT-weighted sum over all constituents of the distance w.r.t the 
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- small 𝝉N indicates compatibility with N axes hypothesis 
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Figure 16: Mass response < mreco � mgen > (left) and mass resolution quoted as RMS(mreco �
mgen) (right) for W jets as a function of the number reconstructed vertices.
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Figure 17: Leading jet N-subjettiness t2/t1 distribution: QCD jets (left) and W jets (right).
The distribution is shown also after requiring the pruned mass to be in the range 60-100 GeV
(dashed lines).
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Figure 18: Average t2/t1 as a function of the number of reconstructed vertices.

improvement is observed for PUPPI jets. In particular, we observe that combining trimming
with PUPPI does not improve the resolution with respect to the other groomers as much it

Substructure: N-subjettiness
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• Signal jets satisfy the inequality 2e3 << (e2)2, 
explaining the definition of the N2 
observable 

• Less discriminating power after grooming 
applied

Energy correlation functions (EFCs)
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4 3 Event samples and selection

where b = 1. The 2-point (1e1
2) and 3-point correlation functions (2e1

3) are defined to be:

1e1
2 = Â

1i<jnJ

zizjDRij (3)

2e1
3 = Â

1i<j<knJ

zizjzk min{DRijDRik, DRijDRjk, DRikDRjk}, (4)

where nJ is the number of particles in the jet, z represents the energy fraction of the particle
in the jet and DR and b are an angular variable and exponent, respectively. For a two-prong
structure, signal jets have a stronger 2-point correlation than a 3-point correlation. In this study,
the energy correlation functions are computed from the jet constituents after applying soft drop
grooming to the jet. This is done to reduce the jet pT and mass dependence of the functions, as
suggested in [60].

The N1
2 observable has excellent performance in discriminating two-prong signal jets from

QCD background jets [60]. However, N1
2 and many other similar variables are correlated with

the jet mass and pT. A selection based on N1
2 would sculpt the jet mass distribution depending

on the pT of the jet, causing a non-trivial shape of the background QCD jet mass distribution.
This makes searching for a resonant peak in the jet mass over a large range in pT particularly
challenging.

To reduce the soft drop jet mass correlations with a selection on N1
2 , we define a transformation

from N1
2 to N1,DDT

2 , intended to decorrelate a selection on N1
2 from r and pT. The decorrela-

tion procedure [61] uses simulated QCD multijet events and defines N1,DDT
2 to be N1

2 � N1
2 (5%),

where N1
2 (5%) is the 5% quantile of the N1

2 distribution, as illustrated in Fig. 1. In Fig. 1, a dis-
tance weighted k-Nearest Neighbor (kNN) approach [62] was adopted to smooth variations in
the transformation minimizing the effects of discontinuities that can arise from a discretized
binned transformation. A selection requiring N1,DDT

2 < 0 ensures a constant QCD background
efficiency of 5% across all the r and pT range. By inverting this requirement, we define a signal-
depleted region that we use to estimate the multijet background in a data-driven technique
described in the following section. The decorrelation ensures that the mass distribution at this
region is also unaffected by the N1,DDT

2 selection.
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Figure 1: N1,DDT
2 transformation map built using a k-Nearest neighbor (kNN) approach and

shown as a function of the jet r and pT. The map corresponds to the 5% quantile of the N1
2

distribution in simulated QCD multijet events. The N1
2 distribution is mostly insensitive to

the jet r and pT in the kinematic phase space considered for this analysis (�5.5 < r < 2) and
further decorrelated yielding the N1,DDT

2 variable.

Fig. 2 shows the comparison between data and simulation of the leading AK8 PUPPI jet soft
drop mass, mPUPPI

SD , and N1,DDT
2 distributions, for the full dataset after the jet kinematic selection.
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Figure 14. Distributions for (top row) M2, (middle row) N2, and (bottom row) D(1,2)
2 measured

on boosted Z and quark/gluon jets. The results are shown (left column) before grooming and (right
column) after grooming.
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3.3 Jet substructure selection 3

energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons
spatially compatible with originating from the electron track. The energy of muons is obtained
from the curvature of the corresponding track. The energy of charged hadrons is determined
from a combination of their momentum measured in the tracker and the matching ECAL and
HCAL energy deposits, corrected for zero-suppression effects and for the response function of
the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from
the corresponding corrected ECAL and HCAL energy.

A simple kinematic selection is applied by requiring at least one high pT AK8 jet. The AK8 jets
used in the analysis are reconstructed by clustering particle flow candidates in the event. To
mitigate the impact of additional proton-proton interactions (pileup), the pileup per particle
identification (PUPPI) algorithm [57] is used to weight the particle flow candidates prior to jet
clustering based on the likelihood of coming from the hard scatter vertex. Further data-driven
corrections are applied to the jet energies as a function of jet pseudorapidity (h) and transverse
momentum to account for detector non-linearities. In order to be fully efficient with respect
to the trigger, the AK8 PUPPI jets are required to have pT > 500 GeV and must be within
|h| < 2.5. Additional quality criteria are applied to the jets in order to remove spurious jet-
like features originating from isolated noise patterns in the calorimeters or the tracker. The
efficiency of these jet quality requirements for signal events is above 99%. We veto events
containing identified and isolated electrons (muons) with pT > 10 GeV and |h| < 2.5 (2.4) to
reduce backgrounds from SM electroweak processes.

3.3 Jet substructure selection

The Z0 ! qq̄ system is reconstructed as a single high pT jet in which the decay products are
merged. We apply the soft drop [58, 59] grooming algorithm, to remove soft and wide-angle ra-
diation inside the jet, produced by the parton shower, pileup interactions or underlying event.
This technique improves the resolution of the jet mass after grooming (mSD). Jets are groomed
using the parameters zcut = 0.1 and b = 0. Here, zcut is a threshold to remove soft jet con-
stituents of all constituents considered at each step of the declustering. The parameter b is an
angular exponent, so when b = 0 soft drop ignores angular information [59].

The jet mass and pT are related for background QCD jets. The scaling variable r, defined as
r = ln(m2

SD/p2
T), is known to be invariant over pT for quarks and gluons. This invariance is

known to breakdown in two regimes, at the non-perturbative low mass region at r = �6 and
a high mass region due to finite cone limitations at r = �2. Consequently, only events in the r
range �5.5 < r < �2 are considered. This requirement is fully efficient for the Z0 signal and
roughly translates to a soft drop mass region from 25 GeV to 185 GeV at pT = 500 GeV.

In addition to the jet mass, the observable N1
2 [60] is used to further discriminate signal from

background. This jet substructure variable can be used to distinguish the two-prong structure
of jets originating from the W, Z, and in this case, Z0 ! qq̄ decay from the QCD, which is
overwhelmingly one prong. The observable N1

2 is defined from a ratio of energy correlation
functions (ECFs) eb

N , that are sensitive to N-particle correlations within a jet [60]:

Nb
2 =

2eb
3

(1eb
2 )

2
, (2)

# angles

# particles

https://link.springer.com/article/10.1007%2FJHEP12%282016%29153

